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Fig. 1: Benchmark scenes in the real world and corresponding scenes in SUMMIT.

Abstract— Autonomous driving in an unregulated urban
crowd is an outstanding challenge, especially, in the presence
of many aggressive, high-speed traffic participants. This paper
presents SUMMIT, a high-fidelity simulator that facilitates
the development and testing of crowd-driving algorithms. By
leveraging the open-source OpenStreetMap map database and a
heterogeneous multi-agent motion prediction model developed
in our earlier work, SUMMIT simulates dense, unregulated
urban traffic for heterogeneous agents at any worldwide loca-
tions that OpenStreetMap supports. SUMMIT is built as an
extension of CARLA and inherits from it the physical and
visual realism for autonomous driving simulation. SUMMIT
supports a wide range of applications, including perception,
vehicle control and planning, end-to-end learning. We provide
a context-aware planner together with benchmark scenarios
and show that SUMMIT generates complex, realistic traffic
behaviors in challenging crowd-driving settings.

I. INTRODUCTION

The vision of using autonomous driving to improve the
safety and convenience of our daily life is coming closer.
However, driving in unregulated, crowded urban environ-
ments, like in uncontrolled roads or unsignalised intersec-
tions in less-developed countries (Fig. 1), remains an open
problem. Human participants can be fairly aggressive in
these scenarios. One may disregard or be unaware of traffic
rules, leading to behaviors like close following, inappropri-

ate overtaking, illegal turning and crossing, etc. The road
condition can become highly chaotic when involving many
participants. Technical challenges for driving in unregulated
urban crowds come from the complexity of both crowd
behaviors and map environments. Traffic agents can be
significantly different from each other. Cars, buses, bicycles,
and motorcycles have different geometry, kinematics, and
dynamics. Human participants also have different behavioral
types - being conservative or aggressive, attentive or dis-
tracted, etc. In terms of the map environment, urban roads
can have complex and versatile layouts: multi-lane roads,
intersections, roundabouts, etc. Road structures significantly
influence the motion of traffic agents and thus generate very
different crowd behaviors in different locations. Such envi-
ronments raise enormous difficulties for perception, control,
planning, and decision-making of robot vehicles.

High-quality data for developing, training, and testing
crowd-driving algorithms are, however, difficult and expen-
sive to acquire due to the cost of devices, regulations and
safety constraints. Although there are publicly available data

∗The authors contributed equally.
The authors are with School of Computing, National University

of Singapore, 117417 Singapore. {caipp, leeyiyuan, yuanfu,
dyhsu}@comp.nus.edu.sg.

ar
X

iv
:1

91
1.

04
07

4v
1 

 [
cs

.R
O

] 
 1

1 
N

ov
 2

01
9



TABLE I: Comparison between SUMMIT and existing driving
simulators.

Simulator
Real

-world
Maps

Unregulated
behaviors

Dense
Traffic

1
Realistic

Visuals &
Sensors

SimMobilityST [5] X × X ×
SUMO [6] X × X ×
TORCS [7] × X × X
Apollo [8] × × × X

Sim4CV [9] × × × X
GTAV [10] × × × X
CARLA [4] × × × X

AutonoViSim [11] × X X X

Force-based
simulator [12] × × X X

SUMMIT (ours) X X X X

sets like KITTI [1], BDD100K [2], Oxford RobotCar [3],
etc., that provide real-world driving data with rich sensor
inputs, these data are not interactive, i.e., one cannot model
the reactions of exo-agents to the robot’s decisions. Driving
simulators offer the capability of generating a virtually un-
limited amount of interactive driving data. However, existing
driving simulators do not capture the full complexity of
unregulated urban crowds such as complex road structures
and traffic behaviors, and are thus insufficient for testing or
training robust driving algorithms. We aim to fill this gap.

We develop a new simulator, SUMMIT, that generates
high-fidelity, interactive data for unregulated, dense urban
traffic on complex real-world maps. SUMMIT uses real-
world maps fetched from online sources to provide a virtually
unlimited source of complex environments. Given arbitrary
locations, the simulator automatically generates crowds of
heterogeneous traffic agents with sophisticated, unregulated
behaviors. The simulator leverages road contexts of real-
world maps to guide the behaviours of traffic agents topolog-
ically and geometrically in order to construct realistic traffic
conditions. We implemented SUMMIT based on CARLA [4]
to leverage the high-fidelity physics, rendering, ans sensors.
Through a python-based API, SUMMIT reveals rich sensor
data, semantic information, and road contexts to external
algorithms, enabling the application in a wide range of fields
such as perception, vehicle control and planning, end-to-end
learning, etc. We provide both qualitative and quantitative
results to show that SUMMIT can generate complex, realistic
mixed traffic in real-world urban environments. We also
developed a built-in context-aware planner as a reference for
future crowd-driving algorithms. The code of SUMMIT will
be released open-source upon acceptance of the paper.

II. RELATED WORK

A. Existing Driving Simulators

Driving simulators have been extensively applied to boost
the development of autonomous driving systems. Recent sim-
ulators (Table I) have brought realistic visuals and sensors,

1We only check-mark simulators explicitly featuring crowd behaviours.

but do not capture the complexities of urban environments
and unregulated traffic behaviors.

Multi-car simulators like TORCS [7], [13], [14] focus on
interactions between multiple robot-vehicles. These simula-
tors suit the study of complex interactions between agents,
but can hardly scale up to crowded urban scenes. CARLA
[4], Sim4CV [9], and GTA [10] explicitly feature detailed
physics modeling and realistic rendering for end-to-end
learning. CARLA also provides a rich set of sensors such
as cameras, Lidar, depth cameras, semantic segmentation,
etc. However, these simulators rely on predefined maps,
limiting the variety of environments. The simulated traffic
also have relatively low density and simple rule-based behav-
iors. Another class of simulators [6], [5], [11], [12] feature
traffic simulation and control in urban environments. Among
them, SUMO [6] and SimMobilityST [5] support real-world
maps but use simple rule-based behaviors, while another
class [11], [12] apply more sophisticated motion models
but are restricted to predefined maps. We aim to model the
complexities in both urban maps and traffic behaviors in an
automatic and unified framework.

B. Crowd Simulation Algorithms

Existing crowd simulation algorithms, e.g., social force
and velocity obstacles, can in principle be applied to generate
crowd behaviors in urban environments. Social force [15],
[16], [17], [18] assume that traffic-agents are driven by
attractive forces exerted by the destination and repulsive
forces exerted by obstacles. Social force can simulate large
crowds, but the quality of interactions are constrained by
model simplicity. Velocity Obstacle (VO) [19] and Recip-
rocal Velocity Obstacle (RVO) [20], [21], [22] compute
collision free motion by optimizing in the feasible velocity
space. Variants such as GVO [23], NH-ORCA [24], B-
ORCA [25], PORCA [26] explicitly handle non-holonomic
traffic agents. Some variants model behavioral types of crowd
agents such as patience [26] and attention [27]. A recent
model GAMMA [28] can simulate heterogeneous traffic
agents with different geometry, kinematics, and behavioral
types in a unified, velocity-space framework. The behavior
model in SUMMIT extends the framework of GAMMA to
encode topological road contexts such as lanes and pedestrian
sidewalks to closely represent real-world scenarios.

III. SUMMIT SIMULATOR

SUMMIT focuses on simulating complex unregulated
behaviours of dense urban traffic in complex real-world
maps. It is designed for generating high-fidelity interactive
data to facilitate the development, training, and testing of
crowd-driving algorithms. SUMMIT automatically generates
massive mixed traffic using topological road contexts and
optimization-based unregulated crowd behaviors. SUMMIT
fetches real-world maps from the OpenStreetMap [29], and
constructs two topological graphs: a lane network for vehi-
cles, and a sidewalk network for pedestrians. These networks



Fig. 2: An overview of SUMMIT that simulates massive mixed traffic at any location in the world.

form a representation of the road contexts. Then, our behav-
ior model, Context-GAMMA, takes road contexts as input to
guide the traffic behaviors geometrically and topologically.
In the micro-scope, Context-GAMMA uses velocity-space
optimization to generate sophisticated, unregulated crowd
behaviors. The low-level structure of SUMMIT is based on
CARLA, retaining its desirable features such as high-fidelity
physics, realistic rendering, weather control, and rich sensors.
Fig. 2 provides an overview of SUMMIT.

A. Representing Real-world Maps

1) Lane Network: A lane network in SUMMIT defines the
connectivity of the road structure at the fidelity of individual
lanes. The network consists of directed lane segments and
connections between them. SUMMIT relies on SUMO [6]
to automatically convert OSM maps to lane networks. The
extensive suite of network editing tools provided by SUMO
can also be leveraged to improve and customize maps. The
lane network interface allows users to locate traffic agents
on the lane network and retrieve connected lane segments.
The interface closely follows CARLA’s waypoint interface,
so that CARLA users can easily adapt to it.

2) Sidewalk Network: A sidewalk network in SUMMIT
defines the behaviors of pedestrians, which usually walk
along road edges and occasionally cross roads. The network
contains sidewalks near road edges defined as poly-lines and
connections between sidewalks defined as cross-able roads.
The sidewalk poly-lines are extracted from the geometry of
roads. Similar to the lane network, the sidewalk network
interface allows users to locate pedestrians on the network
and retrieve the opposite sidewalk for road-crossing.

3) Occupancy Map Interface: We additionally provide an
occupancy map interface to expose drive-able regions for the
ego-vehicle. An occupancy map is the top-down projection
of the road geometry, aligned with the ego-vehicle’s location
and heading direction. It can be used either for collision
checking in control and planning algorithms or as bird-view
input to neural networks.

4) Landmarks: SUMMIT also makes use of landmark
data in OSM maps such as buildings and forests to provide
structurally rich and realistic visuals. We additionally support
randomization of the landmark textures to generate more

versatile visual inputs and enable techniques such as domain
randomization [30].

B. Crowd behavior Modelling

SUMMIT uses Context-GAMMA, a context-aware crowd
behavior model, to generate sophisticated interactive behav-
iors of traffic agents. Context-GAMMA extends GAMMA
[28] to incorporate road contexts and models them as
constraints in velocity space. For completeness, we briefly
introduce GAMMA, and present the extensions in Context-
GAMMA.

GAMMA formulates the motion of traffic agents as con-
strained geometric optimization in velocity space. It assumes
that each traffic agent optimizes its velocity based on the
navigation goal, while being constrained by kinematic con-
straints (e.g. non-holonomic motion of car) and geometric
constraints (collision avoidance with nearby agents). For a
given agent A, let KA represent the set of velocities that
satisfy kinematic constraints and GτA represent the set of
velocities that satisfy geometric constraints for at least τ
time. Then GAMMA selects for A a new velocity from their
intersection:

vnewA = argmin
v∈GτA∩KA

∥∥∥v − vprefA

∥∥∥ , (1)

where vprefA is A’ preferred velocity computed from its goal.
When computing KA and GτA, GAMMA also takes into
account responsibility and attention of the agent, to generate
more human-like motions. We refer readers to [28] for more
details of the construction of KA and GτA. Geometrically,
KA is a convex velocity set and GτA is the intersection of
velocity-space half planes. See Fig. 3a for an example of KA
and GτA.

GAMMA handles heterogeneous traffic agents with dif-
ferent kinematics and geometry in a unified velocity-space
framework. It has been demonstrated with real-world data
sets [28] to generate realistic behaviors for traffic agents.

However, as GAMMA does not make explicit use of road
contexts, it often fails to generate realistic simulation for
complex urban roads. GAMMA agents can aggressively head
towards their goals and be trapped by the complex road
structure. In the real-world, road contexts can effectively
guide and constrain traffic agents’ behaviors: vehicles tend
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Fig. 3: Crowd behaviour modelling with Context-GAMMA: (a) the
feasible velocity space (yellow) of an agent A as the intersection
of kinematic constraints KA and geometry constraints GτA. (b) A
car constrained by the opposite lane and the sidewalk. (c) The
corresponding contextual constraints Cτ1A|Copp-lane

and Cτ2A|Csidewalk
.

(d) The augmented feasible velocity space.

to follow particular lanes when the road is clear and avoid to
drive along the wrong direction. Moreover, as traffic agents
are heterogeneous, they are affected by different sets of static
obstacles: pedestrians consider sidewalks as open spaces, but
vehicles consider them as obstacles.

Our new model, Context-GAMMA, provides a general
way to embed road contexts as objectives and constraints
in velocity space. Context-GAMMA extracts the preferred
velocity vpref of traffic agents from the lane and sidewalk
networks. To diversify agent behaviors, it randomly selects
a lane from all feasible lanes ahead of the agent, and points
vpref to a look-ahead waypoint along the selected lane.

Context-GAMMA can also model traffic rules by cast-
ing contextual constraints, e.g., no wrong-direction driving,
into half planes in agents’ velocity space, forcing them to
select velocities complying with the road rule. Denote the
intersection of all the contextual half planes for an agent
A as CA. Context-GAMMA optimizes the agent velocity
in the augmented feasible velocity space KA ∩ GτA ∩ CA.
Note that KA∩GτA∩CA is also convex by construction and
the objective function Eqn. (1) is quadratic. Therefore, the
optimization problem can be efficiently solved using linear
programming.

Fig. 3b and Fig. 3c show an example of contextual
constraints. To prevent car A in Fig. 3b from driving to the
opposite lane within a time window τ1, the lateral speed
of the car should be constrained under d1/τ1, where d1 is
the distance from the car to the opposite lane. This constraint
forms a half-plane in the velocity space, Cτ1A|Copp-lane

, defined
by a separation line parallel to the opposite lane with an
offset of d1/τ1 from the origin. Any velocity in Cτ1A|Copp-lane

would be feasible. Similarly, collision avoidance with the
sidewalk can result in another half-plane Cτ2A|Csidewalk

in the
velocity space with an offset of d2 from the origin. The
intersection of the two half-planes forms A’s contextual con-
straint, CA (Fig. 3c), which is further imposed on KA ∩GA
to form the feasible space of A (Fig. 3d).

C. Interfaces
The Python API of SUMMIT extends that of CARLA,

exposing to external algorithms not only sensor data and
agent states, but also road contexts like lane networks,
sidewalk networks, and map occupancy grids. Algorithms
can also send vehicle control back to the simulation including
steering, acceleration, braking, reversing, etc.. We further
provide ROS bridging for state, sensor, and occupancy in-
formation to communicate with common robotics systems.
SUMMIT thus enables a wide range of applications such
as perception, sensor-based control, model-based reasoning,
and end-to-end learning.

IV. CONTEXT-AWARE POMDP PLANNING

Driving in an unregulated dense traffic is extremely chal-
lenging. The task is safety critical. No accident or crash
should be raised by the robot. The robot has to be smart
enough to make efficient progress, instead of being ”frozen”
and stuck in the highly dynamic crowd. Algorithms have to
model a large-scale, highly dynamic, and interactive scene
and plan for robot given the large number of participants
that matters in decision-making. We suggest that algorithms
should leverage the road contexts to help long-term planning.
In the following section, we present a Context-POMDP
planner that conditions the POMDP problem proposed in
[26], [31] on road contexts to achieve real-time long-term
planning.

Context-POMDP conditions the hidden states of agents on
road contexts and uses these hidden states to constrain online
planning. It consists of two components: a belief tracker
that infers a joint belief over exo-agents’ hidden states, and
an online POMDP solver that takes the current belief and
computes the optimal driving action. We will discuss these
two components in the following sections.

A. Belief Tracking
The belief tracker maintains a joint belief over two dimen-

sions of hidden states:
• The intention of the traffic agent: Let Ui, i ∈ Iexo be the

set of path candidates for the ith traffic agent extracted
from the road contexts such as the lane network and the
sidewalk network. This agent may take any of the path
candidates in Ui as its actual intention.

• The type of a traffic agent: An agent can be either
distracted, thus not interacting with the ego-vehicle, or
be attentive, thus cooperatively avoid collision with the
ego-vehicle.

The belief tracker is implemented as a factored histogram
filter [32]. It maintains for each exo-agent a set of possible
hidden state value pairs and the corresponding probability
inferred from the interaction history. At each time step,
it uses a motion model (Section IV-B.3) to compute the
likelihood of transitions and observations, and updates the
posterior belief using the Bayes rule.

B. Context-POMDP
The Context-POMDP planner solves a context-conditioned

POMDP model to compute actions for the exo-vehicle.



1) State and Observation Modelling: A state in Context-
POMDP includes both discrete-domain variables and
continuous-domain variables:
• State of the ego-vehicle, sc = (x, y, φ, µ), including the

position (x, y), heading direction φ, and the intended
driving path µ.

• Observable states of exo-agents, {si = (x, y,~v)}i∈Iexo ,
including the position (x, y) and the current velocity ~v.
Iexo defines the set of indices of exo-agents.

• Hidden states of exo-agents, {θi = (ti, µi)}i∈Iexo ,
including the type and the (sampled) intended path of
the ith traffic agent.

We assume that the ego-vehicle can observe its own state
and discretized values of the observable states of exo-agents.
The hidden states of exo-agents can only be inferred and
modelled with beliefs.

2) Action Modelling: The action space of the ego-vehicle
consists of its steering angle and acceleration. Given the well-
known exponential complexity of POMDP planning [33],
Context-POMDP decouples the action space of the ego-
vehicle to keep the branching factor of the planning problem
within a tractable range. Concretely, we restrict the POMDP
to compute the acceleration along the intended path, while
the steering angle is generated using a pure-pursuit algorithm
[34]. The action space contains three possible accelerations
for each time step: {ACC,MAINTAIN,DEC}. The ac-
celeration value for ACC and DEC is 3m/s2 and −3m/s2,
respectively. The maximum speed of the ego-vehicle is
6m/s.

3) Transition Modelling : Context-POMDP predicts traf-
fic agents’ motion using the following set of models. Dis-
tracted traffic agents are assumed to track their intended
path with the current speed. Attentive traffic agents also
tend to follow the sampled path, but use PORCA [26],
an interactive collision avoidance model that is similar to
GAMMA but considerably simpler, to generate the actual
local motion. The motion of all agents, including the ego-
vehicle, are constrained by their kinematics, e.g., pedestrians
are simulated using holonomic motion and car-like vehicles
are simulated using bicycle models. To model stochastic
transitions of exo-agents, their motion are perturbed by
Gaussian noises on the displacement.

4) Reward Modelling: The reward function in Context-
POMDP takes in to account safety, efficiency, and smooth-
ness of driving. It assigns large penalties when the ego-
vehicle collides with any exo-agent, uses a motion cost to
penalize driving at low speed, and finally, penalizes frequent
deceleration. Details of the reward function can be found in
[26].

5) Solving the Context-POMDP: The POMDP model is
solved using a parallel online planner, HyP-DESPOT. We
refer readers to [35] for details on the planner.

V. RESULTS

We want to answer the following questions in the experi-
ments:

• Can SUMMIT simulate realistic traffic on complex
maps?

• How does SUMMIT scale with the density of traffic?
• What are the benefits brought by SUMMIT over rule-

based models commonly used in simulators?
• Can Context-POMDP drive a vehicle safely and effi-

ciently in dense unregulated urban traffic?
We provide both qualitative and quantitative results to answer
these questions.

A. Simulation on Benchmark Scenarios

We designed three real-world benchmark scenarios to
evaluate the performance of SUMMIT and the Context-
POMDP planner.

1) Singapore-Highway (Fig. 1a): A highway in Singapore
with multiple lanes. Traffic agents try to drive as fast as
possible and thus conduct overtaking frequently.

2) Magic-Roundabout (Fig. 1b): A roundabout at Swin-
don, England with very complex layout. Traffic agents meet
at the main roundabout and the accompanying intersections,
having to coordinate with each other.

3) Meskel-Intersection (Fig. 1c): A complex intersection
at the Meskel square, Addis Abeba. Traffic agents come from
different directions and encounter at the intersection, all of
them driving aggressively.

SUMMIT automatically constructs the scenarios from
the open-access map data. It then automatically generates
and simulates unregulated dense traffic on these maps. All
scenarios contain 120 heterogeneous traffic agents driving or
walking in the region of interest, each conducting aggressive
and unregulated behaviors. Once an agent moves out of
the region, we replace it with new agents inside the region
to maintain high density of the traffic. Fig. 1(d-f) shows
qualitative simulation results on the benchmark scenarios.
Comparison with the real scenarios shows that the simu-
lated traffic closely represent the reality. More simulation
results can be found in the accompanying video or via
www.dropbox.com/s/c9a0lt2pl01wrpl.

B. Comparison with Rule-based behavior Model

Context-GAMMA provides sophisticated interactive be-
haviors for dense traffic. To provide a quantitative view of
this capability, we compare Context-GAMMA with a reactive
model that moves agents along lane center-curves and uses
time-to-collision (TTC) [36] to calculate the vehicle’s speed.
Performances of the two models are measured using the
average speed of traffic agents and a congestion factor
defined as the percentage of agents being jammed in the
crowd. These jammed agents are removed from the crowd
after being stationary for 5 s.

Table II shows the comparison on the benchmark sce-
narios. Agents controlled by Context-GAMMA generally
drive much faster than the TTC-agents in all benchmark
scenarios. The crowd controlled by Context-GAMMA also
causes significantly lower traffic congestion throughout 20
minutes of simulation. This is because Context-GAMMA
explicitly models cooperation between agents and provides

www.dropbox.com/s/c9a0lt2pl01wrpl


TABLE II: Comparison between crowd behaviour models on real-
world scenarios (Fig. 1): Context-GAMMA vs. Time-To-Collision.

Avg. Agent
Speed (m/s)

Congestion
Factor

Highway Context-GAMMA 2.56 0.01
TTC 2.16 0.11

Roundabout Context-GAMMA 2.42 0.02
TTC 2.17 0.27

Intersection Context-GAMMA 2.67 0.01
TTC 2.30 0.21

(a)

(b)

Fig. 4: Performance profile of Context-GAMMA and TTC on
the Meskel-Intersection: (a) average speed of traffic agents; (b)
congestion factor of the traffic.

TABLE III: Time performance and scalability of the simulation
for different number of agents on a laptop with an i7-9750H CPU.

Number of Agents 150 200 250 300 350 400
Frequency (Hz) 22.3 21.5 21.2 19.7 15.5 11.1

Update Time (ms) 44.8 46.5 47.2 50.7 64.6 89.9

optimal collision avoidance motion using both steering and
acceleration.

Fig. 4 shows a detailed profile of the agent speeds and the
congestion factors for car-like agents, bicycle-like agents and
pedestrians against the simulation time. Context-GAMMA
consistently leads to higher agent speed for all agent types.
The congestion factor of the TTC-controlled traffic grows
quickly with the simulation time, indicating that agents fail to
coordinate with each other. In contrast, the congestion factor
brought by Context-GAMMA remains significantly lower for
all types of agents.

TABLE IV: Comparison on the driving performance of planning
algorithms: Context-POMDP vs. Roll-out.

Collision
Rate

Avg. Speed
(m/s)

Deceleration
Frequency

Highway Context-POMDP 0.00089 2.05 0.087
Roll-out 0.004 0.036 0.031

Roundabout Context-POMDP 0.00037 1.66 0.105
Roll-out 0.00027 0.14 0.059

Intersection Context-POMDP 0.0 2.5 0.069
Roll-out 0.0 0.12 0.066

C. Time Performance and Scalability

Context-GAMMA scales well to large crowds of traffic
agents. As shown in Table III, the simulation runs at a high
rates when modelling up to 400 agents, and the growth of
computation time is almost linear until the map saturates
with agents.

D. Performance of the Context-POMDP Planner

Driving in an unregulated dense crowd is a challenging,
large-scale planning problem. As most traffic agents are ag-
gressive and highly dynamic, long-term planning is required
for driving safely, efficiently and smoothly. We validate this
by comparing the driving performance of Context-POMDP
with a Roll-out algorithm that rolls out a reactive controller
and measures the future accumulative reward to choose
an optimal action. The reactive controller accelerates the
ego-vehicle when exo-agents in front are far way (> 4m
away), maintains half-speed when they are in caution range
(2 ∼ 4m away), and decelerates when they are close-
by (< 2m away). Table IV provides measurements of the
collision rate per meter, the average vehicle speed, and
the frequency of deceleration when driving the ego-vehicle
using SUMMIT and Roll-out. Compared to Roll-out that can
barely move, Context-POMDP can drive the vehicle through
highly dynamic crowds with significantly higher speed while
maintaining low collision rates and deceleration frequency.
We thus conclude that sophisticated long-term planning is
important for driving in unregulated traffic, and Context-
POMDP establishes a reference for future crowd-driving
algorithms.

VI. CONCLUSION

We presented SUMMIT, a simulator for generating high-
fidelity interactive data for developing, training, and test-
ing crowd-driving algorithms. The simulator uses online
maps to automatically construct unregulated dense traffic at
any location of the world. By integrating topological road
contexts with an optimization-based crowd behavior model,
SUMMIT can generate complex and realistic crowds that
closely represent unregulated traffic in the real-world. We
also provided context-POMDP as a reference planning algo-
rithm for future developments. We envision that SUMMIT
will support a wide range of applications such as perception,
control, planning, and learning for driving in unregulated
dense urban traffic.
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